\square
Time: 1½ Hours
FIRST-TERM
MATHEMATICS
Subject Code

\mathbf{H}	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{4}$

Total No. of Questions : 40 (Printed Pages : 16) Maximum Marks : 40

INSTRUCTIONS : (i) The question paper consists of 40 questions.
(ii) All questions are compulsory.
(iii) All questions are of Multiple Choice Type and carry one mark each.
(iv) For each question select only one correct option from the alternatives given.
(v) Use of calculator is not allowed.

1. The matrix $\mathrm{A}=\left[a_{i j}\right]$ of order 2×2 whose elements are given by $a_{i j}=2 i-j$ is \qquad
(A) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(B) $\left[\begin{array}{ll}1 & 0 \\ 3 & 2\end{array}\right]$
(C) $\left[\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right]$
(D) $\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]$
2. Matrices A and B will be inverses of each other if and only if \qquad .
(A) $\mathrm{AB}=\mathrm{BA}$
(B) $\mathrm{AB}=\mathrm{BA}=\mathrm{O}$
(C) $\mathrm{AB}=\mathrm{O}$ and $\mathrm{BA}=\mathrm{I}$
(D) $\mathrm{AB}=\mathrm{BA}=\mathrm{I}$
3. If $\mathrm{A}=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right], \mathrm{A}^{2}-5 \mathrm{~A}$ is \qquad
(A) an identity matrix
(B) a row matrix
(C) a scalar matrix
(D) a zero matrix
4. For a skew symmetric matrix, all the diagonal elements are \qquad
(A) non-zero
(B) negative numbers
(C) positive numbers
(D) zero
5. If A is a square matrix such that $A^{2}=I$, then $A^{3}+(A+I)^{2}-9 A-I^{2}=\ldots \ldots$.
(A) $\quad-6 \mathrm{~A}+\mathrm{I}$
(B) -6 A
(C) $6 \mathrm{~A}+\mathrm{I}$
(D) $\quad-6 \mathrm{~A}-\mathrm{I}$
6. A, B, C are 3 matrices such that the order of A is 4×3 and the order of B is 4×5 and the order of C is 7×3. Then the order of $\left(A^{T} B\right)^{T} C^{T}$ is \qquad .
(A) 5×3
(B) 4×5
(C) 5×7
(D) 4×3
7. The value of $\left|\begin{array}{ccc}1 & 1 & 1 \\ 11 & 10 & 9 \\ 101 & 100 & 99\end{array}\right|$ is
(A) 1
(B) -1
(C) 2
(D) 0
8. Given that A is a square matrix of order 3 and $|A|=-2$, then $|\operatorname{Adj} A|$ is equal to \qquad .
(A) 4
(B) $\quad-2$
(C) $\quad-4$
(D) 2
9. The determinant which is equal to $\left|\begin{array}{cc}4 & 3 \\ -5 & 1\end{array}\right|$ is
(A) $\left|\begin{array}{cc}3 & 1 \\ 2 & -1\end{array}\right|$
(B) $\quad\left|\begin{array}{cc}6 & -5 \\ 5 & 1\end{array}\right|$
(C) $\quad\left|\begin{array}{ll}-6 & 5 \\ -5 & 1\end{array}\right|$
(D) $\quad\left|\begin{array}{cc}3 & 4 \\ 1 & -5\end{array}\right|$
10. If $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, such that $a d-b c \neq 0$, then $\mathrm{A}^{-1}=$
(A) $\frac{1}{a d-b c}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
(B) $\frac{1}{a d-b c}\left[\begin{array}{cc}-d & b \\ c & -a\end{array}\right]$
(C) $\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
(D) $\frac{1}{a d-b c}\left[\begin{array}{ll}d & b \\ c & a\end{array}\right]$
11. If R is a relation in the set $\{a, b, c, d\}$ given by $\mathrm{R}=\{(a, a),(b, b),(c, c),(d, d),(a, d),(a, b),(d, b)\}$, then \qquad .
(A) $\quad \mathrm{R}$ is reflexive and symmetric but not transitive
(B) $\quad \mathrm{R}$ is reflexive and transitive but not symmetric
(C) $\quad \mathrm{R}$ is symmetric and transitive but not reflexive
(D) $\quad \mathrm{R}$ is an equivalence relation
12. The function $f: \mathbf{N} \rightarrow \mathbf{N}$ defined by $f(x)=x^{3}+12$ is \qquad .
(A) bijective
(B) injective but not surjective
(C) surjective but not injective
(D) neither injective nor surjective
13. * is a binary operation on \mathbf{R} defined by $a^{*} b=a, a, b \in \mathbf{R}$, then
(A) * is commutative but not associative
(B) * is both commutative and associative
(C) * is neither commutative nor associative
(D) * is associative but not commutative
14. $f: \mathbf{R} \rightarrow \mathbf{R}$ is defined by $f(x)=\cos x$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ is defined by $g(x)=x^{2}$. Then $(g o f)(x)=$
(A) $\quad \cos \left(x^{2}\right)$
(B) $\cos ^{2} x$
(C) $x^{2} \cos x$
(D) $x \cos x$
15. Let $\mathbf{R}-\{-4 / 3\} \rightarrow \mathbf{R}$ be a function defined by $f(x)=\frac{4 x}{3 x+4}, x \neq \frac{-4}{3}$. The inverse of f is the map $g:$ Range of $f \rightarrow \mathbf{R}-\left\{\frac{-4}{3}\right\}$ given by :
(A) $\quad g(y)=\frac{3 y}{3-4 y}$
(B) $\quad g(y)=\frac{4 y}{3-4 y}$
(C) $\quad g(y)=\frac{3 y}{4-3 y}$
(D) $\quad g(y)=\frac{4 y}{4-3 y}$
16. If f is a real function such that $f(x)=\frac{\sin ^{-1} 3 x}{4 x}, x \neq 0$ is continuous at $x=0$, then $f(0)=$
(A) $\frac{4}{3}$
(B) $\frac{3}{4}$
(C) $\frac{-3}{4}$
(D) $\frac{-4}{3}$
17. The value of ' m ' for which the real function f where

$$
f(x)= \begin{cases}5 x-4 & , 0<x \leq 1 \\ 4 x^{2}+3 m x & , 1<x<2\end{cases}
$$

is continuous at every point in its domain is
(A) 7
(B) 0
(C) 1
(D) -1
18. To make the real function f continuous at $x=2$, where

$$
f(x)=\left\{\begin{array}{lll}
2 x & \text { if } & x<2 \\
k & \text { if } & x=2 \\
x^{2} & \text { if } & x>2
\end{array}\right.
$$

the value of k should be
(A) 2
(B) -2
(C) 4
(D) $\quad-4$
19. $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by

$$
\begin{aligned}
f(x) & =\frac{a^{x}-a^{-x}}{x}, & & x \neq 0 \\
& =3 k \quad, & x & =0
\end{aligned}
$$

is continuous at $x=0$. Then $k=$
(A) $\frac{2}{3} \log a$
(B) $\frac{-2}{3} \log a$
(C) $\frac{3}{2} \log a$
(D) $\frac{-3}{2} \log a$
20. If $y=x^{2} \log x$, then $\frac{d^{2} y}{d x^{2}}=$
(A) $2 \log x$
(B) $3+2 \log x$
(C) $2+2 \log x$
(D) $3+\log x$
21. If $x+e^{x}=y+e^{y}$, then $\frac{d y}{d x}=$
(A) $\frac{1+e^{x}}{1+e^{y}}$
(B) $\frac{1+e^{y}}{1+e^{x}}$
(C) $1+e^{x}-e^{y}$
(D) $\frac{1-e^{x}}{1-e^{y}}$
22. If $y=e^{\log x^{4}}$, then $\frac{d y}{d x}$ at $x=-1$ is
(A) e
(B) $-e$
(C) 4
(D) -4
23. If $x=a(1-\cos t), y=a(t+\sin t)$ where ' t ' is the parameter and ' a ' is a constant, then $\left(\frac{d y}{d x}\right)_{t=\pi / 2}=$.
(A) -1
(B) 1
(C) $\pi / 2$
(D) $-\pi / 2$
24. If $y=(\sin x)^{\cos x}$, then $\frac{d y}{d x}=$
(A) $\quad(\sin x)^{\cos x}[\sin x \cot x-\sin x \log (\sin x)]$
(B) $\quad(\cos x)^{\sin x}[\cos x \cot x-\sin x \log (\sin x)]$
(C) $\quad(\sin x)^{\cos x}[\cos x \cot x-\sin x \log (\sin x)]$
(D) $\quad(\sin x)^{\cos x}[\cos x \cot x-\cos x \log (\sin x)]$
25. The derivative of $y=\sec ^{2}\left(x^{3}\right)$ with respect to x is \qquad .
(A) $6 x^{2} \sec ^{2}\left(x^{3}\right) \tan \left(x^{3}\right)$
(B) $6 x^{2} \sec (x) \tan (x)$
(C) $2 x \sec \left(x^{3}\right) \tan \left(x^{3}\right)$
(D) $6 x^{2} \sec \left(x^{3}\right) \tan \left(x^{3}\right)$
26. If $x \in[-1,1]$, then $\sin ^{-1}(-x)=$ \qquad .
(A) $\sin ^{-1} x$
(B) $-\sin ^{-1} x$
(C) $\pi-\sin ^{-1} x$
(D) $\operatorname{cosec}^{-1} x$
27. $\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=$
(A) $\tan ^{-1}(1)$
(B) $\tan ^{-1}\left(\frac{1}{2}\right)$
(C) $\tan ^{-1}\left(\frac{3}{4}\right)$
(D) $\tan ^{-1}\left(\frac{2}{3}\right)$
28. If $y=\cos ^{-1} x$, then
(A) $\quad x \in[-1,1] ; y \in[0, \pi]$
(B) $\quad x \in \mathbf{R} ; y \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
(C) $\quad x \in[-1,1] ; y \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
(D) $\quad x \in \mathbf{R}-[-1,1] ; y \in[0, \pi]-\left\{\frac{\pi}{2}\right\}$
29. The value of $\sec ^{2}\left[\tan ^{-1}\left(\frac{5}{11}\right)\right]$ is
(A) $\frac{25}{121}$
(B) $\frac{96}{121}$
(C) $\frac{146}{121}$
(D) $\frac{121}{146}$
30. The value of p for which the vectors $\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\vec{b}=\hat{i}+p \hat{j}+3 \hat{k}$ are parallel vectors is \qquad
(A) $\frac{2}{3}$
(B) $\frac{3}{2}$
(C) 2
(D) 3
31. If \vec{a} and \vec{b} are two unit vectors and θ is the angle between them, then $\vec{a}+\vec{b}$ is a unit vector if $\theta=$
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$
(D) $\frac{2 \pi}{3}$
32. If \hat{i}, \hat{j} and \hat{k} are the three unit vectors, then the vector represented by $(\hat{i} \times \hat{j}) \times \hat{i}+(\hat{j} \times \hat{k}) \times \hat{j}+(\hat{k} \times \hat{i}) \times \hat{k}=$
(A) $\hat{i}+\hat{j}+\hat{k}$
(B) $\hat{i}-\hat{j}+\hat{k}$
(C) $\hat{i}+\hat{j}-\hat{k}$
(D) $\hat{i}-\hat{j}-\hat{k}$
33. The value of λ so that the vectors $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-3 \hat{k}$, $\vec{c}=3 \hat{i}+\lambda \hat{j}+5 \hat{k}$ are complanar is
(A) -1
(B) $\quad-2$
(C) -3
(D) $\quad-4$
34. Let \vec{r} be the position vector of an arbitrary point $p(x, y, z)$. The Cartesian form of the equation of the line passing through two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is
(A) $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
(B) $\frac{x-x_{1}}{x_{2}+x_{1}}=\frac{y-y_{1}}{y_{2}+y_{1}}=\frac{z-z_{1}}{z_{2}+z_{1}}$
(C) $\frac{x+x_{1}}{x_{2}+x_{1}}=\frac{y+y_{1}}{y_{2}+y_{1}}=\frac{z+z_{1}}{z_{2}+z_{1}}$
(D) $\frac{x+x_{1}}{x_{2}-x_{1}}=\frac{y+y_{1}}{y_{2}-y_{1}}=\frac{z+z_{1}}{z_{2}-z_{1}}$
35. The line $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$ is at right angles to the plane $\mathrm{A} x+\mathrm{B} y+\mathrm{C} z+\mathrm{D}=0$ if \qquad .. .
(A) $\quad a \mathrm{~A}+b \mathrm{~B}+c \mathrm{C}=0$
(B) $\quad a \mathrm{~A}+b \mathrm{~B}+c \mathrm{C}=1$
(C) $\quad a \mathrm{~A}=b \mathrm{~B}=c \mathrm{C}$
(D) $\frac{a}{\mathrm{~A}}=\frac{b}{\mathrm{~B}}=\frac{c}{\mathrm{C}}$
36. The distance of the plane $2 x+3 y-6 z+2=0$ from the origin is \qquad
(A) 2
(B) 14
(C) $\frac{2}{7}$
(D) $\frac{2}{\sqrt{23}}$
37. The equation of the plane passing through the intersection of the planes $x+2 y-5 z+1=0$ and $2 x-y+3 z-11=0$ and also through the origin is \qquad .
(A) $13 x+21 y-52 z=0$
(B) $13 x-21 y-52 z=0$
(C) $13 x+21 y+52 z=0$
(D) $13 x+21 y-52 z=\frac{1}{11}$
38. The direction cosines of the normal to the plane $2 x+3 y-z=5$ are :
(A) $2,3,-1$
(B) $\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}$
(C) $2,3,1$
(D) $\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}$
39. The angle between the line $\vec{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$ and the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=6$ is
(A) $\sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$
(B) $\sin ^{-1}\left(\frac{\sqrt{2}}{3}\right)$
(C) $\cos ^{-1}\left(\frac{2}{3}\right)$
(D) $\sin ^{-1}\left(\frac{1}{3}\right)$
40. The equation of the plane through the point $(-1,-1,1)$ which is parallel to the plane $\bar{r} \cdot(\hat{i}+\hat{j}+\hat{k})=0$ is \qquad
(A) $\quad \vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})+1=0$
(B) $\quad \vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})-1=0$
(C) $\quad \vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})+3=0$
(D) $\quad \vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})-3=0$

Space For Rough Work

Space For Rough Work

